AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

Faculty

中文       Go Back       Search
DENG Yi
Teaching Professor
0755-88018085
dengy@sustc.edu.cn

Research Interests
◆Microenvironment, signal transduction and diseases: Cells interact with extra cellular matrix through the forming cell-matrix adhesions, which in turn leads to reorganization of actin cytoskeleton and signal transduction. The assembly and disassembly of cell-matrix adhesions allow cells to move and are critical for embryonic organ development and postnatal cell function and tissue homeostasis. Conversely, defective control of cell-matrix formation is involved in cancer metastasis. The goal of our research is to obtain a detailed understanding of the molecular mechanisms by which the cell-matrix adhesion is regulated. We combine cell biology and biochemical approaches to investigate cell-adhesion dynamics. Recent interests include the mechanism of assembly, disassembly, and trafficking of adhesion protein complexes that act in regulation of integrin functions. Two protein complexes that emerged from these studies are ILK-PINCH-parvin ternary complex and kindlin-migfilin-filamin complex. ILK-PINCH-parvin complex functions as a signal hub of integrin-mediated signaling by interacting with actin cytoskeleton and many diverse signalling pathways, while kindlin-migfilin-filamin complex play key roles in integrin activation. We use microscopy, including cutting edge fluorescence-based technologies to study questions at different spatial scales.
◆Pancreatic beta-cell biology: The molecular mechanism by which Binding immunoglobulin protein (Bip)acts in protecting human islet amyloid polypeptide (hIAPP) induced beta-cell damage.

Professional Experience
◆ 2020-present: Teaching Professor,Department of Biology, Southern University of Science and Technology of China
◆ 2012-2019: Associate Professor, Department of Biology, Southern University of Science and Technology of China
◆ 2011-2012: Research Associate The Chinese University of Hong Kong
◆ 2009-2011: Research Associate The University of Science and Technology of Hong Kong
◆ 2003-2008: Postdoctoral Fellow National Institutes of Health (NIH, USA)

Educational Background
◆ PhD Department of Biology Ruhr-University Bochum (Germany) 2002
◆ MS Department of Biology Shandong University 1999
◆ BS Department of Biology Shandong University 1996

Selected Publication
1. Liu Z, Kwan T, Cheng, Shi Z, Liu Z, Lei Y, Wang C, Shi W, Chen X, Qi X, Cai D, Feng B, Deng Y*, Chen C and Zhao H. Efficient genome editing of genes involved in neural crest development using the CRISPR/Cas9 system in Xenopus embryos . Cell Biosci (2016) 6:22.
2. Wang C, Kam RK, Shi W, Xia Y, Chen X, Cao Y, Sun J, Du Y, Lu G, Chen Z, Chan WY, Chan SO, Deng Y*, Zhao H. The Proto-oncogene Transcription Factor Ets1 Regulates Neural Crest Development through Histone Deacetylase 1 to Mediate Output of Bone Morphogenetic Protein Signaling. J Biol Chem. (2015) 290: 21925.
3. Shi W, Xu G, Wang C, Sperber SM, Chen Y, Zhou Q, Deng Y*, Zhao H*. Heat Shock 70-kDa Protein 5 (Hspa5) Is Essential for Pronephros Formation by Mediating Retinoic Acid Signaling.J Biol Chem. (2015) 290:577. (* co-corresponding author)
4. Lei Y, Guo X, Deng Y, Chen Y, Zhao H Generation of gene disruptions by transcription activator-like effector nucleases (TALENs) in Xenopus tropicalis embryos. Cell Biosci. (2013) 3: 21.
5. Kang ZF, Deng Y, Zhou Y, Fan RR, Chan JC, Laybutt DR, Luzuriaga J, Xu G. Pharmacological reduction of NEFA restores the efficacy of incretin-based therapies through GLP-1 receptor signalling in the beta cell in mouse models of diabetes. Diabetologia(2013) 56: 423.
6. Lei Y, Guo X, Liu Y, Cao Y, Deng Y, Chen X, Cheng CH, Dawid IB, Chen Y, Zhao H. Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A. (2012) 109: 17484.
7. Kam RK, Deng, Y, Chen Y, Zhao H. Retinoic acid synthesis and functions in early embryonic development.Cell Biosci. (2012) 2: 11.
8. Deng Y*, Guo Y*, Watson H, Au WC, Shakoury-Elizeh M, Basrai MA, Bonifacino JS, Philpott CC. GGA2 mediates sequential ubiquitin-independent and -dependent steps in the trafficking of ARN1 from the trans-golgi network to the vacuole. J Biol Chem (2009) 284: 23830-23841. (* co-first author)
9. Deng Y*, Golinelli-Cohen M*, Smirnova E, and Jackson CL. A COPI coat subunit interacts directly with an early-Golgi localized Arf Exchange Factor. EMBO Rep (2009) 10: 58-64. (* co-first author)
10. Kim Y*, Deng Y*, Philpott CC. GGA2- and Ubiquitin-dependent Trafficking of Arn1, the Ferrichrome Transporter of Saccharomyces cerevisiae. Mol Biol Cell (2007) 18: 1790-1802. (* co-first author)
11. Deng Y, Schmidtmann A, Kruse S, Filatov V, Heilmeyer LM Jr, Jaquet K Thieleczek R. Phosphorylation of human cardiac troponin I G203S and K206Qlinked to familial hypertrophic cardiomyopathy affects actomyosin interaction in different ways. J Mol Cell Cardiol (2003) 35: 1365-1374.
12. Deng Y, Schmidtmann A., Redlich A., Westerdorf B., Jaquet K, Thieleczek R. Effects of Phosphorylation and Mutation R145G on Human Cardiac Troponin I Function. Biochemistry (2001) 40: 14593-14602.

百家乐免费是玩| 广州百家乐官网筹码| 百家乐投注五揽式| 百家乐游戏规测| 百家乐官网款| 阴宅风水24山分金| 冠军百家乐现金网| 百家乐精神| 网上百家乐官网赌| 百家乐庄比闲多多少| 百家乐云顶| 大发888娱乐场奖金| 大发888作弊| 青岛棋牌室| 文登市| 百家乐官网怎么赢博彩正网| 澳门百家乐官网怎玩| 百家乐官网必胜密| 千亿娱百家乐官网的玩法技巧和规则 | 大发888真钱注册| 最新皇冠网址| 澳门百家乐官网娱乐城怎么样| 玩百家乐官网有何技巧| 皇博娱乐| 五峰| 玩百家乐官网技巧巧| 百家乐怎么投注| 百家乐永利娱乐网| 大发888 df888| 百家乐官网策略详解| 网上百家乐官网大赢家| 阳宅64卦与24山| 索雷尔百家乐的玩法技巧和规则 | 澳门赌博| OG百家乐官网大转轮| 游戏房百家乐赌博图片| 大发888娱乐城下栽| 大发888游戏平台hgdafa888gw| 百家乐官网全程打庄| 百家乐官网双峰县| 博狗备用网址|