AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

Faculty

中文       Go Back       Search
Liang Kong
Professor
kongl@sustce.edu.cn

Essential Information

Name:Liang Kong

Position:Professor

Email:kongl@sustce.edu.cn

Research Field:Mathematical Physics (Topological field theories, 2d conformal field theories, category theory, representation theory, topological phases of matters)


Educational Background

2005.10  Ph.D in Mathematics, Rutgers, the State University of New Jersey

1997.5  Master in Physics, University of Houston

1994.7  B.S. in Physics, University of Science & Technology of China


Papers

1.   Open-string vertex algebras, categories and operads, Yi-Zhi Huang, Liang Kong, Comm. Math. Phys. 250 (2004) 433–471, [arXiv:math/0308248]

2.   Full field algebras, Yi-Zhi Huang, Liang Kong, Comm. Math. Phys. 272 (2007) 345–396, [arXiv:math/0511328]

3.   Full field algebras, operads and tensor categories, Liang Kong, Adv. Math. 213 (2007) 271–340, [arXiv:math/0603065]

4.   Modular invariance for conformal full field algebras, Yi-Zhi Huang, Liang Kong, Trans. Amer. Math. Soc. 362 (2010) 3027–3067, [arXiv:math.QA/0609570]

5.   Open-closed field algebras, Liang Kong, Comm. Math. Phys., 280, 207-261 (2008) [arXiv:math.QA/0610293]

6.   Cardy condition for open-closed field algebras, Liang Kong, Comm. Math. Phys. 283, 25–92 (2008) [arXiv:math/0612255]

7.    Morita classes of algebras in modular tensor categories, Liang Kong, Ingo Runkel, Adv. Math. 219, 1548–1576 (2008) [arXiv:0708.1897]

8.    Cardy algebras and sewing constraints, I, Liang Kong, Ingo Runkel, Comm. Math. Phys. 292, 871–912 (2009) [arXiv:0807.3356]

9.    Algebraic structures in Euclidean and Minkowskian two-dimensional conformal field theory, Liang Kong, Ingo Runkel, Noncommutative structures in Mathematics and Physics, 217–238, K. Vlaam. Acad. Belgie Wet. Kunsten (KVAB), Brussels, 2010, [arXiv:0902.3829]

10.  Field theories with defects and the centre functor, Alexei Davydov, Liang Kong, Ingo Runkel, Mathematical Foundations of Quantum Field and Perturbative String Theory, Hisham Sati, Urs Schreiber (eds.), Proceedings of Symposia in Pure Mathematics, AMS Vol. 83 (2011) 71–128 [arXiv:1107.0495]

11.  Conformal field theory and a new geometry, Liang Kong, Mathematical Foundations of Quantum Field and Perturbative String Theory, Hisham Sati, Urs Schreiber (eds.), Proceedings of Symposia in Pure Mathematics, AMS, Vol. 83 (2011) 199–244 [arXiv:1107.3649]

12.   Invertible defects and isomorphisms of rational CFTs, Alexei Davydov, Liang Kong, Ingo Runkel, Adv. Theor. Math. Phys., 15, (2011) 43–69 [arXiv:1004.4725]

13.   Models for gapped boundaries and domain walls, Alexei Kitaev, Liang Kong, Comm. Math. Phys. 313 (2012) 351-373 [arXiv:1104.5047]

14.   Electric-magnetic duality and topological order on the lattice, Oliver Buerschaper, Matthias Christandl, Liang Kong, Miguel Aguado, Nuclear Physics B. 876 [FS] (2013) 619-636 [arXiv:1006.5823]

15.   Some universal properties of Levin-Wen models, Liang Kong, XVIITH International Congress of Mathematical Physics, World Scientific 444-455 (2014) [arXiv:1211.4644]

16.   Cardy algebras and sewing constraints, II, Liang Kong, Qin Li, Ingo Runkel, Adv. Math. 262 (2014) 604-681 [arXiv:1310.1875]

17.   Anyon condensation and tensor categories, Liang Kong, Nucl. Phys. B 886 (2014)436-482 [arXiv:1307.8244]

18.   The functoriality of the centre of an algebra, Alexei Davydov, Liang Kong, Ingo Runkel, Adv. Math. 285 (2015) 811-876 [arXiv:1307.5956]

19.  Modular extensions of unitary braided fusion categories and 2+1D topological/SPT orders with symmetries, Tian Lan, Liang Kong, Xiao-Gang Wen, Comm. Math. Phys. 351 (2017) 709-739 [arXiv:1602.05936]

20.   A theory of 2+1D fermionic topological orders and fermionic/bosonic topological orders with symmetries, Tian Lan, Liang Kong, Xiao-Gang Wen, Phys. Rev. B 94, 155113 (2016) [arXiv:1602.05936]

21.   Classification of 2+1D topological orders and SPT orders for bosonic and fermionic systems with on-site symmetries, Tian Lan, Liang Kong, Xiao-Gang Wen, Phys. Rev. B 95, 235140 (2017) [arXiv:1602.05936]

22.    Boundary-bulk relation in topological orders, Liang Kong, Xiao-Gang Wen, Hao Zheng, Nucl. Phys. B 922 (2017), 62-76 [arXiv:1702.00673]

23.    Drinfeld center of enriched monoidal categories, Liang Kong, Hao Zheng, Adv. Math. 323 (2018) 411-426 [arXiv:1704.01447]

24.    Gapless edges of 2d topological orders and enriched monoidal categories, Liang Kong, Hao Zheng, Nucl. Phys. B 927 (2018) 140-165 [arXiv:1705.01087]

25.    Topological orders and factorization homology, Yinghua Ai, Liang Kong, Hao Zheng, Adv. Theor. Math. Phys. Vol. 21, Number 8, (2017) 1845-1894 [arXiv:1607.08422]

26.    A classification of 3+1D bosonic topological orders (I): the case when point-like excitations are all bosons, Tian Lan, Liang Kong, Xiao-Gang Wen, Phys. Rev. X 8, 021074, (2018) [arXiv:1704.04221]

27.    The center functor is fully faithful, Liang Kong, Hao Zheng, accepted by Adv. Math. [arXiv:1507.00503]


百家乐官网玩法及细则| 百家乐平注法攻略| 百家乐官网技巧之微笑心法| 百家乐视频台球游戏| 免费百家乐统计软件| 百家乐官网牌具公司| 新全讯网网址g2vvv| 百家乐官网中庄闲比例| 水果机上分器| 百家乐官网事一箩筐的微博| 投注平台网| 太阳城百家乐娱乐开户| 百家乐官网的保单打法| 大玩家百家乐的玩法技巧和规则| 真人百家乐官网代理分成| 海南太阳城大酒店| 澳门百家乐官网官方网站| 肯博百家乐官网游戏| 伟德百家乐下载| 百家乐官网开户送十元| 全讯网768866| 真钱百家乐哪里最好| 百家乐官网正反投注| 豪享博百家乐的玩法技巧和规则| 云鼎百家乐官网代理| 皇冠网赌球安全吗| 旧金山百家乐的玩法技巧和规则 | 新全讯网网址g5vvv| 百家乐官网网址官网| 百家乐官网稳中一注法| 大发888充值卡| 百家乐币| 百家乐官网策略与心得| 大发888 无法进入网页| 怎么玩百家乐的玩法技巧和规则| 百家乐官网群到shozo网| 百家乐官网统计| 百家乐试用软件| 红宝石百家乐官网娱乐城| 百家乐官网U盘下载| 在线玩轮盘|