AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

Faculty

中文       Go Back       Search
LIU Chang
Professor
0755-88018221
liuc@sustech.edu.cn

Brief Introduction
LIU Chang, Professor of the Department of Physics, SUSTech. Dr. Liu’s research mainly focuses on revealing the novel electronic properties of functional materials such as magnetic, topological, and thermoelectric materials, using angle resolved photoemission spectroscopy (ARPES) and other spectroscopic techniques. His research group also masters the techniques of material growth such as the flux method, chemical vapor transfer (CVT) and molecular beam epitaxy (MBE). On the field of magnetic materials, his work uncovers the spin splitting of energy bands in an unconventional antiferromagnet. In the field of topological materials, his works presented e.g., a gapless topological surface state in magnetic topological insulators and the Fermi arcs in three dimensional Dirac semimetals.


Research Interests
1. The technique of angle resolved photoemission spectroscopy (ARPES) and ultrahigh vacuum;
2. Electronic properties of iron-based high temperature superconductors;
3. Exotic electronic behavior in topological insulators and topologically nontrivial materials;
4. Electronic properties of graphene and related structures.


Professional Experiences

2024-Present: Professor, Department of Physics, SUSTech

2015-2024: Associate Professor, Department of Physics, SUSTech

2014-2015: Assistant Professor, Department of Physics, SUSTech

2011-2014: Postdoctoral Research Associate, Princeton University (USA)


Educational Background
2006-2011: PhD in Condensed Matter Physics, Iowa State University (USA)
2003-2006: BS in Department of Physics, Sun Yat-sen University (China)
2001-2003: Department of Urban Planning, Sun Yat-sen University (China)


Selected Publications

1. M. Zeng et al., Observation of spin splitting in room-temperature metallic antiferromagnet CrSb. Adv. Sci. 11, 2406529 (2024).

2. Y.-P. Zhu et al., Observation of plaid-like spin splitting in a noncoplanar antiferromagnet. Nature 626, 523 (2024).

3. X.-R. Liu et al., Spectroscopic signature of obstructed surface states in SrIn2P2. Nat. Commun. 14, 2905 (2023).

4. Y.-J. Hao et al., Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X 9, 041038 (2019) (Physics 精選報道).

5. Q. Lu et al., Unexpected large hole effective masses in SnSe revealed by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 119, 116401 (2017).

油尖旺区| 百家乐官网视频地主| 百家乐网络公式| 大发888 软件| 百家乐官网游戏大小| 威尼斯人娱乐城官方地址| 百家乐官网平的概率| 凱旋門百家乐娱乐城| 香港百家乐官网玩| 太阳城百家乐外挂| 百家乐官网赌缆十三式| 大发888官方 df888| 百家乐视频双扣游戏| 百家乐官网现金网平台排行榜| 澳门百家乐游戏玩法| 百家乐平台注册送现金| 真人百家乐官网网站接口| 全讯网433234| 澳门百家乐群官网| 百家乐官网路单显示程序| 网上在线赌场| 百家乐策略网络游戏信誉怎么样 | 百家乐娱乐官网网| 搓牌百家乐官网技巧| 在线棋牌游戏| 大发888网页版出纳| 伟德百家乐下载| 百家乐官网园棋牌| 丹寨县| 大发888王博| 百家乐网络真人斗地主| 恒利百家乐官网的玩法技巧和规则 | 在线百家乐投注| 郑州水果机遥控器| 永利博百家乐游戏| 网上百家乐官网娱乐场开户注册 | 缅甸赌场| 百家乐鞋业| 明陞百家乐官网娱乐城| 澳门百家乐官网有赢钱的吗 | 最好的百家乐好评平台都有哪些 |