AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

Faculty

中文       Go Back       Search
Qin LI
Associate Researcher
liqin@sustech.edu.cn

Essential Information

Name:Qin LI

Position:Associate Researcher

Highest Degree:Doctor of Philosophy in Mathematics

Email:liqin@sustech.edu.cn

Research Field:Mathematical foundation of Quantum Field Theory


Educational Background

2001-2005, University of Science and Technology of China, B.S. in Mathematics , USTC, July 2005

2005-2011, University of California at Berkeley, Ph.D. in Mathematics, UC Berkeley, May 2011


Working Experience

2011.9-2015.7, School of Mathematical Sciences, University of Science and Technology of China, Assistant Professor

2013.6-2015.7, Department of Mathematics, The Chinese University of Hong Kong, Postdoctoral fellow

2015.7-2021.9, Department of Mathematics, Southern University of Science and Technology, Assistant Professor

2021.10- present, Institute for Quantum Sciences, Southern University of Science and Technology, Associate Researcher


Papers and Patents

(1).  “Bargmann-Fock sheaves on Ka?hler manifolds”, Communications in Mathematical Physics 388 (2021), no. 3, 1297–1322.

(2). “Quantization of Ka?hler manifolds”,  Journal of Geometry and Physics, 163 (2021), 104143, 13 pp

(3).  “One-dimensional Chern-Simons theory and deformation quantization”, accepted by ICCM Pro-ceedings 2018.

(4) . “BV quantization of the Rozansky-Witten model”, Communications in Mathematical Physics 355(2017), 97-144.

(5).  “Batalin-Vilkovisky quantization and the algebraic index”, Advances in Mathematics 317 (2017), 575-639.

(6).  “On the B-twisted topological sigma model and Calabi-Yau geometry”, Journal of Differential Geometry 102 (2016), no. 3, 409-484.

(7).  “Cardy algebras and sewing constraints, II” Advances in Mathematics 262 (2014), 604-681.

(8).  “On the B-twisted quantum geometry of Calabi-Yau manifolds”, Proceedings of ICCM 2013

(9).  “A geometric construction of representations of the Berezin-Toeplitz quantization”, submitted to Advances in Theoretical and  Mathematical Physics, available at arXiv:2001.10869.

(10).  “Kapranov’s L∞ structures, Fedosov’s star products, and one-loop exact BV quantizations on Ka?hler manifolds”, submitted to Communications in Number Theory and Physics, available at arXiv:2008.07057.

 


吉首市| 百家乐官网能赚大钱吗| 百家乐官网赌大小| 太阳城百家乐如何看路| 宣威市| 博彩通评级| 金城百家乐官网买卖路| 大发888娱乐城出纳柜台| 王子百家乐官网的玩法技巧和规则 | 娱乐城百家乐官网可以代理吗| 集安市| 鼎龙百家乐官网的玩法技巧和规则 | 百家乐官网扑| 太阳百家乐网| 百家乐官网用品| 大发888收获| 赌百家乐官网的下场| 百家乐官网九| 百家乐官网天天赢钱| 鑫鼎百家乐官网的玩法技巧和规则 | 百家乐庄闲比率| 名仕百家乐的玩法技巧和规则| 佛山市| 百家乐庄不连的概率| 大发888新闻| 百家乐官网怎么计算概率| 百家乐作弊视频| 太阳城线上娱乐| 玩百家乐官网上高尔夫娱乐场| 利澳百家乐的玩法技巧和规则| sz全讯网网站xb112| 至尊娱乐城| 风水学中的24向是什么| 大发888在线开户| 都坊百家乐官网的玩法技巧和规则| 威尼斯人娱乐场开户注册| 丰原市| 百家乐国际娱乐城| 半岛棋牌游戏| 威尼斯人娱乐城可靠吗| 百家乐官网博娱乐平台|