AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

Faculty

中文       Go Back       Search
WANG Rong
Associate Professor
0755-88018780
wangr3@sustech.edu.cn

Research Interests:

◆ Computational fluid dynamics

◆ Numerical partial differential equations

◆ Numerical software

Professional Experience:

◆ 2002.09—2004.08: Postdoc, Dalhousie University, Canada

◆ 2004.09—2008.06: Postdoc, University of Saskatchewan, Canada

◆ 2008.07—2013.08: Professor, Wuhan University, China

◆ 2013.09—present: Associated Professor,?Southern University of Science and?Technology

Educational Background:

◆ Ph.D, Dalhousie University, Canada, 2002

◆ M.Sc, Dalhousie University, Canada, 1999

◆ B.Sc, University of Science & Technology of China, 1996

Publications:

[1] A comparison of adaptive software for 1-D parabolic PDEs, Rong Wang*, Patrick Keast and Paul H. Muir, J. Comput. Appl. Math., Vol 169, 2004, pp. 127-150.

[2] A high-order global spatially adaptive collocation method for 1-D parabolic PDEs, Rong Wang*, Patrick Keast and Paul H. Muir, Appl. Numer. Math., Vol 50, 2004, pp. 239-260.

[3] BACOL: B-spline Adaptive COLlocation software for 1-D parabolic PDEs, Rong Wang*, Patrick Keast and Paul H. Muir, ACM Trans. Math. Softw., Vol 30, 2004, pp. 454-470.

[4] Linear instability of the fifth-order WENO method, Rong Wang and Raymond J. Spiteri*, SIAM J. Numer. Anal., Vol 45, 2007, pp. 1871-1901.

[5] Algorithm 874: BACOLR: Spatial and Temporal Error Control Software for PDEs based on High Order Adaptive Collocation, Rong Wang, Patrick Keast and Paul H. Muir*, ACM Trans. Math. Softw, Volume 34, Issue 3, 2008, Article 15.

[6] Observations on the fifth-order WENO method with non-uniform meshes, Rong Wang, Hui Feng, and Raymond J. Spiteri*, Appl. Math. Comput., Vol. 196, 2008, pp. 433-447.

[7] A New Mapped Weighted Essentially Non-oscillatory Scheme, Hui Feng, Fuxing Hu, and Rong Wang*, J. Sci. Comput., Vol 51, 2012, pp. 449--473.

[8] An improved mapped weighted essentially non-oscillatory scheme, Hui Feng, Cong Huang, and Rong Wang*, Appl. Math. Comput.,Vol 232, 2014, pp. 453-468.

[9] A new family of mapped weighted essentially non-oscillatory method using rational mapping functions, Rong Wang*, Hui Feng and Cong Huang, J. Sci. Comput., to appear.

[10] An adaptive mesh method for 1D hyperbolic conservation Laws, Fuxing Hu*, Rong Wang, Xueyong Chen, and Hui Feng, Appl. Numer. Math.,Vol 91,2015,pp. 11-25.

德州扑克 英文| 威尼斯人娱乐欢迎您| 百家乐官网赌博技巧网| 百家乐官网珠仔路| 百家乐网上真钱娱乐平台| 大发888免费送奖金| 百家乐官网有不有作弊| 电子百家乐博彩正网| 重庆百家乐团购百嘉乐量贩KTV地址| 狮威百家乐娱乐| 百家乐官网游戏分析| 24山方位吉凶| 银河国际娱乐场| 百家乐作弊工具| 伟德国际博彩| 至尊百家乐奇热| 丰禾线上娱乐| 网上百家乐官网内| 188金宝博娱乐城| 百家乐电子路单下载| 万豪娱乐开户| 怎么玩百家乐网上赌博| 明升备用网址 | 百家乐傻瓜式投注法| 88娱乐城1| 百家乐下路教学| 百家乐真人赌场娱乐网规则| 邻水| 菲彩百家乐的玩法技巧和规则| 百家乐官网接线玩法| 百家乐投注翻倍方法| 莎车县| 百家乐技巧开户| 百家乐官网平玩法可以吗| 塑料百家乐官网筹码| 百家乐珠盘路| 百家乐官网投注平台信誉排名 | 百家乐博赌场娱乐网规则 | 宜宾县| 大发888客服咨询电话| 最新百家乐官网双面数字筹码|