AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

師資

EN       返回上一級       師資搜索
Stavros Garoufalidis
講席教授
stavros@sustech.edu.cn

Quantum Topology and Hyperbolic Geometry in Da Nang, Vietnam May 27-31, 2019

Curriculum Vitae in pdf

Research lnterests:

My research interests are in low (i.e. 3 and 4) dimensional topology, the Jones polynomial, hyperbolic geometry, mathematical physics, Chern-Simons theory, string theory, M-theory, enumerative combinatorics, enumerative algebraic geometry, number theory, quantum topology, asymptotic analysis, numerical analysis, integrable systems, motivic cohomology, K-theory, Galois theory, deformation and geometric quantization.

In my early career, I got interested in TQFT (topological quantum field theory) invariants of knotted 3-dimensional objects, such as knots, braids, srting-links or 3-manifolds.

Later on, I became interested in finite type invariants (a code name for perturbative quantum field theory invariants of knotted objects). I studied their axiomatic properties, and related the various definitions to each other. A side project was to study the various filtrations of the mapping class groups, and to explicitly construct cocycles, using finite type invariants.

More recently, I have been studying the colored Jones polynomials of a knot, and its limiting geometry and topology. The colored Jones polynomials is not a single polynomial, but a sequence of them, which is known to satisfy a linear q-difference equation. Writing the equation into an operator form, and setting q=1, conjecturally recovers the A-polynomial. The latter parametrizes out the moduli space of SL(2,C) representation of the knot complement.

Another relation between the colored Jones polynomial and SL(2,C) (ie, hyperbolic) geometry is the Volume Conjecture that relates evaluations of the colored Jones polynomial to the volume of a knot. This and related conjectures fall into the problem of proving the existence of asymptotic expansions of combinatorial invariants of knotted objects. Most recently, I am working on resurgence of formal power series of knotted objects. Resuregence is a key property which (together the nonvanishing of some Stokes constant) implies the Volume Conjecture. Resurgence is intimately related to Chern-Simons perturbation theory, and produces singularities of geometric as well as arithmetic interst. Resurgence seems to be related to the Grothendieck-Teichmuller group.

In short, my interests are in low dimensional topology, geometry and mathematical physics.

 

Collaborators(54):

NamePlaceCountry
Dror Bar-NatanUniversity of TorontoCanada
Jean BellissardGeorgia Institute of TechnologyUSA
Frank CalegariThe University of ChicagoUSA
Ovidiu CostinOhio State UniversityUSA
Zsuzsanna DancsoAustralian National University, Canberra, AustraliaAustralia
Renaud DetcherryMPIM, BonnGermany
Tudor DimofteUniversity of California, DavisUSA
Jerome DuboisUniversite Paris VIIFrance
Nathan DunfieldUniversity of Illinois Urbana-ChampainUSA
Evgeny FominykhChelyabinsk State University, ChelyabinskRussia
Jeff GeronimoGeorgia Institute of TechnologyUSA
Matthias GoernerPixar Animation StudiosUSA
Mikhal GoussarovPOMI, St. PeterburgRussia
Nathan HabeggerUniversity of NantesFrance
Andrei KapaevInternational School for Advanced Studies, TriesteItaly
Craig HodgsonUniversity of MelbourneAustralia
Neil HoffmanOklahoma State university, StillwaterUSA
Rinat KashaevUniversity of GenevaSwitzerland
Christoph KoutschanJohannes Kepler UniversityAustria
Andrew KrickerNational University of SingaporeSingapore
Piotr KucharskiUniversity of Warsaw, WarsawPoland
Alexander ItsIndiana University-Purdue UniversityUSA
Yueheng LanGeorgia Institute of TechnologyUSA
Aaron LaudaUniversity of Southern CaliforniaUSA
Thang T.Q. LeGeorgia Institute of TechnologyUSA
Christine LeeUniversity of Texas at AustinUSA
Jerome LevineBrandeis UniversityUSA
Martin LoeblCharles University, PragueCzech Republic
Marcos MarinoUniversity of GeneveSwitzerland
Thomas MattmanCalifornia State UniversityUSA
Iain MoffattUniversity of South AlabamaUSA
Hugh MortonUniversity of LiverpoolUK
Hiroaki NakamuraTokyo Metropolitan UniversityJapan
Sergey NorinMcGillCanada
Tomotada OhtsukiResearch Institute for Mathematical Sciences, KyotoJapan
Michael PolyakTel-Aviv UniversityIsrael
Ionel PopescuGeorgia Institute of TechnologyUSA
James PommersheimReed CollegeUSA
Lev RozanskyUniversity of North CarolinaUSA
J. Hyam RubinsteinUniversity of MelbourneAustralia
Henry SegermanOklahoma State UniversityUSA
Alexander ShumakovitchGeorge Washington University, Washington DCUSA
Piotr SulkowskiUniversity of Warsaw, WarsawPoland
Xinyu SunTulane UniversityUSA
Vladimir TarkaevChelyabinsk State University, ChelyabinskRussia
Peter TeichnerMax Planck Institute for mathematics, BonnGermany
Morwen ThislethwaiteUniversity of Tennessee, KnoxvilleUSA
Dylan P. ThurstonUniversity of Indiana, BloomingtonUSA
Roland van der VeenUniversity of LeidenThe Netherlands
Andrei VesninSobolev Institute of Mathematics, NovosibirskRussia
Thao VuongGeorgia Institute of TechnologyUSA
Doron ZeilbergerRutgers UniversityUSA
Don ZagierMax Planck Institute, BonnGermany
Christian ZickertUniversity of MarylandUSA

 

Ph.D. student:

NamePlaceCountry
Ian MoffattUniversity of LondonUK
Roland van der VeenUniversity of AmsterdamThe Netherlands
Thao VuongGeorgia Institute of TechnologyUSA
德州扑克打法| 德州扑克打法| 免佣百家乐官网赌场优势| 德州扑克书籍| 死海太阳城酒店| 百家乐www| 同乐城百家乐现金网| 劳力士百家乐官网的玩法技巧和规则 | 网上百家乐官网| 百家乐官网现金网排名| 宜兰县| 利来国际网上娱乐| 体育博彩概论| 澳门博彩在线| 澳门足球博彩官网| 大发888song58| 大发888娱乐客户端| 申博太阳城娱乐| 全讯网网址| 大发888体育注册| 大发888收获| 大发888登录器下载| 网狐棋牌源码| 娱乐城申请送奖金| 云博娱乐城| 足球平台开户| 高要市| 百家乐官网输一压二| 金赞百家乐官网现金网| 澳门百家乐官网登陆网址| 百家乐官网开户平台| 反赌百家乐的玩法技巧和规则 | 百家乐注册赠金| 中原百家乐官网的玩法技巧和规则| 长江百家乐官网的玩法技巧和规则 | 百家乐好不好玩| 百家乐的视频百家乐| 百家乐赌博技巧大全| 新2百家乐娱乐城| 仕達屋百家乐的玩法技巧和规则| 威尼斯人娱乐城免费注册|