AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

師資

EN       返回上一級       師資搜索
吳開亮
副教授
副教授
wukl@sustech.edu.cn

吳開亮,男,籍貫安徽省安慶市,理學博士,南方科技大學數學系副教授、博士生導師。2011年獲華中科技大學數學學士學位;2016年獲北京大學計算數學博士學位;2016-2020年先后在美國猶他大學和美國俄亥俄州立大學從事博士后研究工作;2021年1月加入南方科技大學、任副教授。研究方向包括計算流體力學與數值相對論、機器學習與數據驅動建模、微分方程數值解、高維逼近與不確定性量化等。研究成果發表在SINUM,SISC,Numer. Math.,M3AS,J. Comput. Phys.,JSC,ApJS,Phys. Rev. D等期刊上。曾獲中國數學會計算數學分會 優秀青年論文獎一等獎(2015)和中國數學會 鐘家慶數學獎(2019)。


研究領域

微分方程數值解、計算流體力學與數值相對論、機器學習與數據科學、計算物理、高維逼近論與不確定性量化


榮譽及獲獎

◆ 2019:中國數學會 鐘家慶數學獎

◆ 2016:北京大學 優秀畢業生

◆ 2015:中國數學會計算數學分會 優秀青年論文獎一等獎

◆ 2014:北京大學 “挑戰杯”五四青年科學獎一等獎


代表性論文 (更新于2021年5月)

◆ K. Wu

Positivity-preserving analysis of numerical schemes for ideal magnetohydrodynamics
SIAM Journal on Numerical Analysis,   56(4):2124--2147, 2018.


◆ K. Wu and C.-W. Shu

Provably positive high-order schemes for ideal magnetohydrodynamics: Analysis on general meshes

Numerische Mathematik,   142(4): 995--1047, 2019.


◆ K. Wu and D. Xiu

Data-driven deep learning of partial differential equations in modal space

Journal of Computational Physics,   408: 109307, 2020. 


◆ K. Wu and C.-W. Shu

Provably physical-constraint-preserving discontinuous Galerkin methods for multidimensional relativistic MHD equations

Numerische Mathematik,   accepted for publication, 2021.


◆ K. Wu 

Minimum principle on specific entropy and high-order accurate invariant region preserving numerical methods for relativistic hydrodynamics

submitted for publication, arXiv:2102.03801, 2021.


◆ Z. Chen, V. Churchill, K. Wu, and D. Xiu

Deep neural network modeling of unknown partial differential equations in nodal space

Journal of Computational Physics,     submitted for publication, 2021.


◆ K. Wu and Y. Xing

Uniformly high-order structure-preserving discontinuous Galerkin methods for Euler equations with gravitation: Positivity and well-balancedness

SIAM Journal on Scientific Computing,    43(1), A472--A510, 2021.


◆ K. Wu, T. Qin, and D. Xiu

Structure-preserving method for reconstructing unknown Hamiltonian systems from trajectory data

SIAM Journal on Scientific Computing,   42(6): A3704--A3729, 2020. 


◆ K. Wu and C.-W. Shu

Entropy symmetrization and high-order accurate entropy stable numerical schemes for relativistic MHD equations

SIAM Journal on Scientific Computing,   42(4): A2230--A2261, 2020. 


◆ Z. Chen, K. Wu, and D. Xiu

Methods to recover unknown processes in partial differential equations using data

Journal of Scientific Computing,   85:23, 2020. 


◆ K. Wu, D. Xiu, and X. Zhong

A WENO-based stochastic Galerkin scheme for ideal MHD equations with random inputs 

Communications in Computational Physics,   accepted for publication, 2020.


◆ J. Hou, T. Qin, K. Wu and D. Xiu

A non-intrusive correction algorithm for classification problems with corrupted data

Commun. Appl. Math. Comput.,  in press, 2020.


◆ T. Qin, K. Wu, and D. Xiu

Data driven governing equations approximation using deep neural networks

Journal of Computational Physics,   395: 620--635, 2019.


◆ K. Wu and D. Xiu

Numerical aspects for approximating governing equations using data

Journal of Computational Physics,   384: 200--221, 2019.


◆ K. Wu and C.-W. Shu

A provably positive discontinuous Galerkin method for multidimensional ideal magnetohydrodynamics

SIAM Journal on Scientific Computing,   40(5):B1302--B1329, 2018.


◆ Y. Shin, K. Wu, and D. Xiu

Sequential function approximation with noisy data

Journal of Computational Physics,   371:363--381, 2018.


◆ K. Wu and D. Xiu

Sequential function approximation on arbitrarily distributed point sets

Journal of Computational Physics,   354:370--386, 2018.


◆ K. Wu and H. Tang

On physical-constraints-preserving schemes for special relativistic magnetohydrodynamics with a general equation of state

Z. Angew. Math. Phys.,   69:84(24pages), 2018.


◆ K. Wu, Y. Shin, and D. Xiu

A randomized tensor quadrature method for high dimensional polynomial approximation

SIAM Journal on Scientific Computing,   39(5):A1811--A1833, 2017. 


◆ K. Wu

Design of provably physical-constraint-preserving methods for general relativistic hydrodynamics

Physical Review D,   95, 103001, 2017. 


◆ K. Wu, H. Tang, and D. Xiu

A stochastic Galerkin method for first-order quasilinear hyperbolic systems with uncertainty

Journal of Computational Physics,   345:224--244, 2017. 


◆ K. Wu and H. Tang

Admissible states and physical-constraints-preserving schemes for relativistic magnetohydrodynamic equations

Math. Models Methods Appl. Sci. (M3AS),   27(10):1871--1928, 2017. 


◆ Y. Kuang, K. Wu, and H. Tang

Runge-Kutta discontinuous local evolution Galerkin methods for the shallow water equations on the cubed-sphere grid

Numer. Math. Theor. Meth. Appl.,   10(2):373--419, 2017. 


◆ K. Wu and H. Tang

Physical-constraint-preserving central discontinuous Galerkin methods for special relativistic hydrodynamics with a general equation of state

Astrophys. J. Suppl. Ser. (ApJS),   228(1):3(23pages), 2017. (2015 Impact Factor of ApJS: 11.257)


◆ K. Wu and H. Tang

A direct Eulerian GRP scheme for spherically symmetric general relativistic hydrodynamics

SIAM Journal on Scientific Computing,   38(3):B458--B489, 2016. 


◆ K. Wu and H. Tang

A Newton multigrid method for steady-state shallow water equations with topography and dry areas

Applied Mathematics and Mechanics,   37(11):1441--1466, 2016. 


◆ K. Wu and H. Tang

High-order accurate physical-constraints-preserving finite difference WENO schemes for special relativistic hydrodynamics

Journal of Computational Physics,   298:539--564, 2015.


◆ K. Wu and H. Tang

Finite volume local evolution Galerkin method for two-dimensional relativistic hydrodynamics

Journal of Computational Physics,   256:277--307, 2014. 


◆ K. Wu, Z. Yang, and H. Tang

A third-order accurate direct Eulerian GRP scheme for the Euler equations in gas dynamics

Journal of Computational Physics,   264:177--208, 2014. 


學術服務

◆ 美國《數學評論》評論員

◆ 下列期刊審稿人

Communications in Computational Physics

Computer Methods in Applied Mechanics and Engineering

East Asian Journal on Applied Mathematics

Engineering Optimization

Journal of Computational and Applied Mathematics

Journal of Computational Physics

Journal of Scientific Computing

Journal of Applied Mathematics and Computing

Mathematical Models and Methods in Applied Sciences (M3AS)

Mathematica Numerica Sinica

SIAM Journal on Scientific Computing

SIAM/ASA Journal on Uncertainty Quantification



百家乐网开服表| 单机百家乐官网棋牌| 太阳城百家乐官网出千技术| 百家乐官网的嬴钱法| 豪门娱乐网| 申博太阳城管理网| 百家乐长龙太阳城| 百家乐官网代理荐| 真钱百家乐官网公司哪个好| 百家乐官网如何投注法| 百家乐官网事电影| 百家乐官网怎么玩才会赢钱| 百家乐官网游戏辅助| 百家乐官网发牌| 沙巴百家乐现金网| 邳州市| 现金百家乐官网技巧| 八卦24山| 网络百家乐会作假吗| 大发888真钱帐户注册| 利德赌博| 安阳百家乐官网赌博| 至尊百家乐官网娱乐场开户注册| 24山72向吉凶断| 平远县| 环球百家乐官网娱乐城| 大发888九州娱乐城| 百家乐官网打法分析| 赌场百家乐台| 盈禾娱乐城| 百家乐官网详解| 尊尚会娱乐城| 劳力士百家乐官网的玩法技巧和规则| 百家乐官网都是什么人玩的| 利都百家乐国际赌场娱乐网规则| 澳门百家乐常赢打法| 现金百家乐赢钱| 六合彩摇奖结果| ag百家乐官网下载| 大发888八大胜博彩| 新锦江百家乐官网娱乐场|