AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

師資

EN       返回上一級       師資搜索
熊捷
講席教授
xiongj@sustech.edu.cn

教育經歷
1992年,北卡羅來納大學教堂山分校,統計系,獲哲學博士學位;
1986年,北京大學,統計系,獲統計碩士學位;
1983年,北京大學,數學系獲數學學士學位;

 

工作經歷
2017年12月至今,南方科技大學,數學系,講席教授;
2012年至2017年,澳門大學,數學系,教授;
2004年至2014年,田納西大學,數學系,教授;
1999年至2004年,田納西大學,數學系,副教授;
1993年至1999年,田納西大學,數學系,助理教授;
1992年至1993年,北卡羅來納大學夏洛特分校,訪問講師;
1986年至1988年,北京大學,指導員;

 

榮譽及獲獎
Humboldt Research Fellowship, 2003.
Canada Research Chair in Stochastic Processes and Filtering. 2002.
University of Tennessee-Oak Ridge National Lab Science Alliance research award. 1996-2000.
Graduate School Dissertation Fellowship. 1992.
George E. Nicholson, Jr. Fellowship, 1989.

 

Selected Publications
1.Jie Xiong (2013). Three Classes of Nonlinear Stochastic Partial Differential Equations. World Scientific.
2.J. Xiong (2008). An Introduction to Stochastic Filtering Theory, Oxford Graduate Texts in Mathematics. 18. Oxford University Press.
3.T. Hida, R. Karandikar, H. Kunita, B. Rajput, S. Watanabe and J. Xiong (editors). Stochastics in Finite and Infinite Dimensions: In Honor of Gopinath Kallianpur. pp. 500. Birkhauser, 2000.
4.G. Kallianpur and J. Xiong (1995). Stochastic Differential Equations on Infinite Dimensional Spaces, IMS Lecture notes-monograph series, Vol. 26.
5.R. Wang, J. Xiong and L. Xu (2017). Irreducibility of stochastic real Ginzburg-Landau equation driven by stable noises and applications. Bernoulli, 23, No. 2, 1179-1201.
6.Z. Dong, J. Xiong, J. L. Zhai and T. S. Zhang (2017), A Moderate Deviation Principle for 2-DStochastic Navier-Stokes Equations Driven by Multiplicative L′evy Noises. J. Funct. Anal., 272, no. 1, 227-254.
7.J. Xiong and X. Yang (2016) Superprocesses with interaction and immigration. Stochastic Processes Appl. 126, 3377-3401.
8.Y. Chen, H. Ge, J. Xiong and L. Xu (2016). The Large Deviation Principle and Fluctuation Theorem for the Entropy Product Rate of a Stochastic Process in Magnetic Fields. J. Math. Physics. 57, 073302
9.F. Wang, J. Xiong and L. Xu (2016). Asymptotics of Sample Entropy Production Rate for Stochastic Differential Equations. Journal Statistical Physics.163, no. 5, 1211-1234,
10.S. Lenhart, J. Xiong and J. Yong (2016). Optimal Controls for Stochastic Partial Differential Equations with an Application in Controlling Rabbit Population. SIAM Control. Optim. 54, no. 2, 495-535
11.J.T. Shi, G.C. Wang and J. Xiong (2016). Leader-Follower Stochastic Differential Game with Asymmetric Information and Applications. Automatica J. IFAC 63, 60-73.
12.G. Wang, Z. Wu and J. Xiong (2015). A linear-quadratic optimal control problem of forward-backward stochastic differential equations with partial information. IEEE Transactions on Automatic Control 60, No.11, 2904-2916.
13.P. Fatheddin and J. Xiong (2015). Large deviation principle for some measure-valued processes. Stoch. Proce. Appl. 125, no. 3, 970-993.
14.Zenghu Li, Huili Liu, Jie Xiong and Xiaowen Zhou (2013). The reversibility and an SPDE for the generalized Fleming-Viot processes with mutation. Stoch. Proce. Appl.123, 4129-4155.
15.J. Xiong (2013). Super-Brownian motion as the unique strong solution to a SPDE. Ann. Probab. 41, No. 2, 1030-1054.
16.G.C. Wang, Z. Wu and J. Xiong (2013). Maximum principles for optimal control of forward-backward stochastic systems under partial information. SIAM J. Control Optim. 51, No. 1, 491-524.
17.Z. Li, H. Wang, J. Xiong and X. Zhou (2012), Joint continuity of the solutions to a class of nonlinear SPDEs. Probab. Theory Relat. Fields 153, No. 3, 441-469.
18.J. Detemple, W. Tian and J. Xiong (2012). Optimal stopping with reward constraints. Financial Stochastics 16, 423-448.
19.L. Mytnik, J. Xiong and O. Zeitouni (2011). Snake representation of a superprocess in random environment. ALEA, Lat. Am. J. Probab. Math. Stat. 8, 335–377.
20.J. Huang, G. Wang and J. Xiong (2009). A Maximum Principle for Partial Information Backward Stochastic Control Problems with Applications. SIAM J. Control Optim.40, No. 4, 2106-2117.
21.K.J. Lee, C. Mueller and J. Xiong (2009). Some properties for superprocess over a stochastic flow. Ann. Inst. H. Poincar\’e Probab. Statist. 45, No. 2, 477-490.
22.J. Xiong and X.Y. Zhou (2007). Mean-Variance portfolio selection under partial information. SIAM J. Control Optim. 46, no. 1, 156–175.
23.Z. Li, H. Wang and J. Xiong. (2004). A degenerate stochastic partial differential equation for superprocesses with singular interaction. Probab. Th. Relat. Fields 130, 1-17.
24.J. Xiong (2004). A stochastic log-Laplace equation. Ann. Probab. 32, 2362-2388.
25.D. Dawson, A. Etheridge, K. Fleischmann, L. Mytnik, E. Perkins, and J. Xiong (2002). Mutually catalytic processes in the plane: Finite measure states. Ann. Probab. 30, no. 4, 1681–1762.
26.K. Fleischmann and J. Xiong (2001). A cyclically catalytic branching model, Annals of Probability, 2, 820-861.
27.T. Kurtz and J. Xiong (1999). Particle representations for a class of nonlinear SPDEs. Stochastic Processes and their Applications 83, 103-126.
28.G. Kallianpur and J. Xiong, Large deviation principle for a class of stochastic partial differential equations, Annals of Probability, 24, 1996, 320-345.
29.G. Kallianpur and J. Xiong, Diffusion approximation of stochastic differential equations driven by Poisson random measures, Annals of Applied Probability, 5, 1995, 493-517.
30.J. Xiong and M. P. Qian (1990). Construction and properties of coupled diffusion processes, Acta Math. Appl. Sinica, 13, 391-400 (in Chinese).

属虎属鼠合伙做生意吗| 沙巴百家乐官网现金网| 百家乐号技巧| 网页百家乐官网游戏| 娱乐城百家乐规则| 阿瓦提县| 赌博百家乐判断决策| 广州百家乐赌场娱乐网规则| 百家乐官网有技巧么| 百家乐小九梭哈| 百家乐官网扑克牌耙| 百家乐平玩法几副牌| 百家乐官网代理龙虎| 百家乐赌场方法| 百家乐庄比闲多多少| 丰台区| 百家乐桌定制| 皇冠百家乐官网代理网址| 百家乐的连庄连闲| 宾利百家乐官网现金网| 太阳城黑胶三折| 百家乐怎么样投注| 百家乐官网家居 | 太子百家乐官网娱乐城| 民县| 帝王百家乐的玩法技巧和规则| 爱婴百家乐官网的玩法技巧和规则| 科尔| 大发888大发888娱乐城| 百家乐娱乐城博彩正网| 澳门百家乐官网网上赌博| 博九娱乐网| 神娱乐百家乐的玩法技巧和规则| 长春百家乐官网的玩法技巧和规则| 百家乐官网出千原理| 德州扑克 教学| 百家乐筹码价格| 百家乐怎么看单| 博天堂百家乐官网官网| 百家乐官网玩法秘诀| 博狗投注|