AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

師資

EN       返回上一級       師資搜索
熊捷
講席教授
xiongj@sustech.edu.cn

教育經歷
1992年,北卡羅來納大學教堂山分校,統計系,獲哲學博士學位;
1986年,北京大學,統計系,獲統計碩士學位;
1983年,北京大學,數學系獲數學學士學位;

 

工作經歷
2017年12月至今,南方科技大學,數學系,講席教授;
2012年至2017年,澳門大學,數學系,教授;
2004年至2014年,田納西大學,數學系,教授;
1999年至2004年,田納西大學,數學系,副教授;
1993年至1999年,田納西大學,數學系,助理教授;
1992年至1993年,北卡羅來納大學夏洛特分校,訪問講師;
1986年至1988年,北京大學,指導員;

 

榮譽及獲獎
Humboldt Research Fellowship, 2003.
Canada Research Chair in Stochastic Processes and Filtering. 2002.
University of Tennessee-Oak Ridge National Lab Science Alliance research award. 1996-2000.
Graduate School Dissertation Fellowship. 1992.
George E. Nicholson, Jr. Fellowship, 1989.

 

Selected Publications
1.Jie Xiong (2013). Three Classes of Nonlinear Stochastic Partial Differential Equations. World Scientific.
2.J. Xiong (2008). An Introduction to Stochastic Filtering Theory, Oxford Graduate Texts in Mathematics. 18. Oxford University Press.
3.T. Hida, R. Karandikar, H. Kunita, B. Rajput, S. Watanabe and J. Xiong (editors). Stochastics in Finite and Infinite Dimensions: In Honor of Gopinath Kallianpur. pp. 500. Birkhauser, 2000.
4.G. Kallianpur and J. Xiong (1995). Stochastic Differential Equations on Infinite Dimensional Spaces, IMS Lecture notes-monograph series, Vol. 26.
5.R. Wang, J. Xiong and L. Xu (2017). Irreducibility of stochastic real Ginzburg-Landau equation driven by stable noises and applications. Bernoulli, 23, No. 2, 1179-1201.
6.Z. Dong, J. Xiong, J. L. Zhai and T. S. Zhang (2017), A Moderate Deviation Principle for 2-DStochastic Navier-Stokes Equations Driven by Multiplicative L′evy Noises. J. Funct. Anal., 272, no. 1, 227-254.
7.J. Xiong and X. Yang (2016) Superprocesses with interaction and immigration. Stochastic Processes Appl. 126, 3377-3401.
8.Y. Chen, H. Ge, J. Xiong and L. Xu (2016). The Large Deviation Principle and Fluctuation Theorem for the Entropy Product Rate of a Stochastic Process in Magnetic Fields. J. Math. Physics. 57, 073302
9.F. Wang, J. Xiong and L. Xu (2016). Asymptotics of Sample Entropy Production Rate for Stochastic Differential Equations. Journal Statistical Physics.163, no. 5, 1211-1234,
10.S. Lenhart, J. Xiong and J. Yong (2016). Optimal Controls for Stochastic Partial Differential Equations with an Application in Controlling Rabbit Population. SIAM Control. Optim. 54, no. 2, 495-535
11.J.T. Shi, G.C. Wang and J. Xiong (2016). Leader-Follower Stochastic Differential Game with Asymmetric Information and Applications. Automatica J. IFAC 63, 60-73.
12.G. Wang, Z. Wu and J. Xiong (2015). A linear-quadratic optimal control problem of forward-backward stochastic differential equations with partial information. IEEE Transactions on Automatic Control 60, No.11, 2904-2916.
13.P. Fatheddin and J. Xiong (2015). Large deviation principle for some measure-valued processes. Stoch. Proce. Appl. 125, no. 3, 970-993.
14.Zenghu Li, Huili Liu, Jie Xiong and Xiaowen Zhou (2013). The reversibility and an SPDE for the generalized Fleming-Viot processes with mutation. Stoch. Proce. Appl.123, 4129-4155.
15.J. Xiong (2013). Super-Brownian motion as the unique strong solution to a SPDE. Ann. Probab. 41, No. 2, 1030-1054.
16.G.C. Wang, Z. Wu and J. Xiong (2013). Maximum principles for optimal control of forward-backward stochastic systems under partial information. SIAM J. Control Optim. 51, No. 1, 491-524.
17.Z. Li, H. Wang, J. Xiong and X. Zhou (2012), Joint continuity of the solutions to a class of nonlinear SPDEs. Probab. Theory Relat. Fields 153, No. 3, 441-469.
18.J. Detemple, W. Tian and J. Xiong (2012). Optimal stopping with reward constraints. Financial Stochastics 16, 423-448.
19.L. Mytnik, J. Xiong and O. Zeitouni (2011). Snake representation of a superprocess in random environment. ALEA, Lat. Am. J. Probab. Math. Stat. 8, 335–377.
20.J. Huang, G. Wang and J. Xiong (2009). A Maximum Principle for Partial Information Backward Stochastic Control Problems with Applications. SIAM J. Control Optim.40, No. 4, 2106-2117.
21.K.J. Lee, C. Mueller and J. Xiong (2009). Some properties for superprocess over a stochastic flow. Ann. Inst. H. Poincar\’e Probab. Statist. 45, No. 2, 477-490.
22.J. Xiong and X.Y. Zhou (2007). Mean-Variance portfolio selection under partial information. SIAM J. Control Optim. 46, no. 1, 156–175.
23.Z. Li, H. Wang and J. Xiong. (2004). A degenerate stochastic partial differential equation for superprocesses with singular interaction. Probab. Th. Relat. Fields 130, 1-17.
24.J. Xiong (2004). A stochastic log-Laplace equation. Ann. Probab. 32, 2362-2388.
25.D. Dawson, A. Etheridge, K. Fleischmann, L. Mytnik, E. Perkins, and J. Xiong (2002). Mutually catalytic processes in the plane: Finite measure states. Ann. Probab. 30, no. 4, 1681–1762.
26.K. Fleischmann and J. Xiong (2001). A cyclically catalytic branching model, Annals of Probability, 2, 820-861.
27.T. Kurtz and J. Xiong (1999). Particle representations for a class of nonlinear SPDEs. Stochastic Processes and their Applications 83, 103-126.
28.G. Kallianpur and J. Xiong, Large deviation principle for a class of stochastic partial differential equations, Annals of Probability, 24, 1996, 320-345.
29.G. Kallianpur and J. Xiong, Diffusion approximation of stochastic differential equations driven by Poisson random measures, Annals of Applied Probability, 5, 1995, 493-517.
30.J. Xiong and M. P. Qian (1990). Construction and properties of coupled diffusion processes, Acta Math. Appl. Sinica, 13, 391-400 (in Chinese).

百家乐视频双扣游戏| 威尼斯人娱乐平台最新地址| 博必发百家乐官网的玩法技巧和规则 | 金木棉百家乐官网网络破解| 赌百家乐官网的高手| 百家乐官网9点直赢| 二爷百家乐官网的玩法技巧和规则| 做生意风水关键吗| 百家乐美食坊| 大发888手机版亚洲城| 百家乐官网百家乐官网群| 百家乐官网足球投注网哪个平台网址测速最好 | 百家乐官网赌博筹码| 百家乐高手和勒威| 运城百家乐的玩法技巧和规则| 大发888官网df888esbgfwz| 皇博娱乐| 百家乐官网大白菜| 求购百家乐程序| 百家乐网盛世三国| 六合彩网站| 模拟百家乐官网的玩法技巧和规则 | 庆云县| 百家乐官网技巧经| 唐朝百家乐的玩法技巧和规则 | 博彩网站源码| 网络百家乐官网赌博赢钱| 百家乐怎么投注| 大发888新址 | 百家乐计划| 捞金博彩论坛| 多伦多百家乐官网的玩法技巧和规则 | 水浒传老虎机破解| 百家乐注册开户送现金| 威尼斯人娱乐网注册网址| 百家乐官网百乐发破解版| 百家乐平注胜进与负追| 博盈娱乐场| 百家乐单双打法| 百利宫娱乐城官方网| 百家乐官网游戏新|