AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

Faculty

中文       Go Back       Search
Fang Kong
Assistant Professor
kongf@sustech.edu.cn

Research Interests

Online Learning, Reinforcement Learning, Machine Learning


Education

2020.9-2024.6 Shanghai Jiao Tong University, PhD in Computer Science

2016.9-2020.6 Shandong University, Bachelor’s Degree in Software Engineering


Research Experiences

2023.2-2023.8 The Chinese University of Hong Kong, Research Assistant

2022.7-2024.7 Tencent WXG, Research Intern

2021.12-2022.5 Microsoft Research Asia, Research Intern

2021.6-2021.8 Alibaba DAMO Academy, Research Intern


Publications

  1. Yu Xia*, Fang Kong*, Tong Yu, Liya Guo, Ryan A. Rossi, Sungchul Kim, Shuai Li, “Convergence-Aware Online Model Selection with Time-Increasing Bandits”, The Web Conference (WWW), 2024.

  2. Fang Kong, Shuai Li, “Improved Bandits in Many-to-one Matching Markets with Incentive Compatibility”, Proceedings of the 38th Annual AAAI Conference on Artificial Intelligence (AAAI), 2024. 

  3. Fang Kong*, Xiangcheng Zhang*, Baoxiang Wang, Shuai Li, “Improved Regret Bounds for Linear Adversarial MDPs via Linear Optimization”, Transactions on Machine Learning Research (TMLR), 2024.

  4. Fang Kong, Canzhe Zhao, Shuai Li, “Best-of-three-worlds Analysis for Linear Bandits with Follow-the-regularized-leader Algorithm”, Proceedings of the 36th Conference on Learning Theory (COLT), 2023.

  5. Fang Kong, Jize Xie, Baoxiang Wang, Tao Yao, Shuai Li. “Online Influence Maximization under Decreasing Cascade Model”, Proceedings of the 22nd International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2023.

  6. Yichi Zhou, Fang Kong, Shuai Li, “Stochastic No-Regret Learning for General Games with Variance Reduction”, International Conference on Learning Representations (ICLR), 2023.

  7. Fang Kong, Shuai Li, “Player-optimal Stable Regret for Bandit Learning in Matching Markets”, Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 2023.

  8. Fang Kong, Yichi Zhou, Shuai Li, “Simultaneously Learning Stochastic and Adversarial Bandits with General Graph Feedback”, International Conference on Machine Learning (ICML), 2022.

  9. Fang Kong, Junming Yin, Shuai Li, “Thompson Sampling for Bandit Learning in Matching Markets”, International Joint Conference on Artificial Intelligence (IJCAI), 2022.

  10. Fang Kong, Yueran Yang, Wei Chen, Shuai Li, “The Hardness Analysis of Thompson Sampling for Combinatorial Semi-bandits with Greedy Oracle”, Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2021.

  11. Fang Kong, Yueran Yang, Wei Chen, Shuai Li, “Combinatorial Online Learning based on Optimizing Feedbacks (in Chinese)”, Big Data Research, 2021.

  12. Shuai Li, Fang Kong, Kejie Tang, Qizhi Li, Wei Chen, “Online Influence Maximization under Linear Threshold Model”, Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2020.

  13. Fang Kong, Qizhi Li, Shuai Li, “A Survey on Online Influence Maximization” (in Chinese), Computer Science, 2020.

百家乐官网怎么出千| 百家乐官网EA平台| 1368棋牌游戏平台| 百家乐官网楼梯缆大全| 打百家乐庄闲的技巧| 葡京百家乐官网技巧| 澳门百家乐怎洋赢钱| 澳门百家乐官网娱乐城怎么样| 百家乐真人娱乐城| 百家乐官网哪条路好| 百家乐官网| 网上百家乐官网作| 和记国际网上娱乐| 百家乐网上投注代理商| 真钱百家乐官网开户试玩 | 八大胜官网| 百家乐娱乐网77scs| 百家乐官网庄河闲的赌法| 大发888娱乐场下载co| 百家乐投注秘笈| 澳门百家乐官网网上赌| 新利国际娱乐网| 百家乐大| 博狗百家乐真实| 百家乐官网线上| 察隅县| 全讯网报码| 太阳城百家乐主页| 蓝盾百家乐官网具体玩法技巧| 武胜县| 威尼斯人娱乐城送宝马| 百家乐优惠高的网址| 全讯网百家乐官网的玩法技巧和规则 | 柳河县| 巴厘岛百家乐的玩法技巧和规则 | 大发888娱乐官网| 百家乐的桌布| 新百家乐官网的玩法技巧和规则| 奔驰百家乐官网可信吗| 真钱梭哈| 百家乐转盘|