AG百家乐代理-红桃KAG百家乐娱乐城_百家乐筹码片_新全讯网网址xb112 (中国)·官方网站

師資

EN       返回上一級       師資搜索
孔芳
助理教授
kongf@sustech.edu.cn

研究領域

在線學習,強化學習,機器學習


教育經歷

2020.9-2024.6 上海交通大學,計算機科學與技術,工學博士

2016.9-2020.6 山東大學,軟件工程,工學學士


科研經歷

2023.2-2023.8 香港中文大學,科研助理

2022.7-2024.7 騰訊WXG,研究型實習生

2021.12-2022.5 微軟亞洲研究院,研究型實習生

2021.6-2021.8 阿里巴巴達摩院,研究型實習生


學術成果

  1. Yu Xia*, Fang Kong*, Tong Yu, Liya Guo, Ryan A. Rossi, Sungchul Kim, Shuai Li, “Convergence-Aware Online Model Selection with Time-Increasing Bandits”, The Web Conference (WWW), 2024.

  2. Fang Kong, Shuai Li, “Improved Bandits in Many-to-one Matching Markets with Incentive Compatibility”, Proceedings of the 38th Annual AAAI Conference on Artificial Intelligence (AAAI), 2024. 

  3. Fang Kong*, Xiangcheng Zhang*, Baoxiang Wang, Shuai Li, “Improved Regret Bounds for Linear Adversarial MDPs via Linear Optimization”, Transactions on Machine Learning Research (TMLR), 2024.

  4. Fang Kong, Canzhe Zhao, Shuai Li, “Best-of-three-worlds Analysis for Linear Bandits with Follow-the-regularized-leader Algorithm”, Proceedings of the 36th Conference on Learning Theory (COLT), 2023.

  5. Fang Kong, Jize Xie, Baoxiang Wang, Tao Yao, Shuai Li. “Online Influence Maximization under Decreasing Cascade Model”, Proceedings of the 22nd International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2023.

  6. Yichi Zhou, Fang Kong, Shuai Li, “Stochastic No-Regret Learning for General Games with Variance Reduction”, International Conference on Learning Representations (ICLR), 2023.

  7. Fang Kong, Shuai Li, “Player-optimal Stable Regret for Bandit Learning in Matching Markets”, Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 2023.

  8. Fang Kong, Yichi Zhou, Shuai Li, “Simultaneously Learning Stochastic and Adversarial Bandits with General Graph Feedback”, International Conference on Machine Learning (ICML), 2022.

  9. Fang Kong, Junming Yin, Shuai Li, “Thompson Sampling for Bandit Learning in Matching Markets”, International Joint Conference on Artificial Intelligence (IJCAI), 2022.

  10. Fang Kong, Yueran Yang, Wei Chen, Shuai Li, “The Hardness Analysis of Thompson Sampling for Combinatorial Semi-bandits with Greedy Oracle”, Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2021.

  11. Fang Kong, Yueran Yang, Wei Chen, Shuai Li, “Combinatorial Online Learning based on Optimizing Feedbacks (in Chinese)”, Big Data Research, 2021.

  12. Shuai Li, Fang Kong, Kejie Tang, Qizhi Li, Wei Chen, “Online Influence Maximization under Linear Threshold Model”, Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2020.

  13. Fang Kong, Qizhi Li, Shuai Li, “A Survey on Online Influence Maximization” (in Chinese), Computer Science, 2020.



百家乐软件辅助器| 百家乐官网最长的缆| 博彩机| 百家乐官网赌场方法| 威尼斯人娱乐场送18| 百家乐官网币| 游戏机百家乐作弊| 繁体子24画的有| 波音开户| 百家乐有电脑游戏吗| 百家乐官网下注平台| 免费百家乐统计工具| 百家乐官网投住系统| 大发888游戏客服电话| 玩百家乐官网游戏的最高技巧| 状元百家乐的玩法技巧和规则| 百家乐官网9点直赢| 大发888游戏平台403| 百家乐官网推荐| 新宝百家乐官网网址| 大发888博彩娱乐城| 百家乐官网赌场视频| TT娱乐城开户,| 百家乐的巧门| 精英百家乐官网现金网| 大发888交流心得| 玩百家乐新澳门娱乐城| 广州百家乐官网筹码| 大发888城| 做生意店子内风水布置| 168棋牌游戏| 利赢百家乐现金网| 网上百家乐官网是叫九五至尊么| bet365提款要多久| 下载百家乐的玩法技巧和规则| 明陞百家乐官网娱乐城| 百家乐官网赌博机吧| 大发888网页版登录| 曼哈顿百家乐的玩法技巧和规则 | 鼎龙百家乐的玩法技巧和规则 | 百家乐庄闲收益率|